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Abstract—We study the effects of center initialization on the
performance of a family of distributed gradient-based clustering
algorithms introduced in [1], that work over connected networks
of users. In the considered scenario, each user contains a local
dataset and communicates only with its immediate neighbours,
with the aim of finding a global clustering of the joint data.
We perform extensive numerical experiments, evaluating the
effects of center initialization on the performance of our family
of methods, demonstrating that our methods are more resilient
to the effects of initialization, compared to centralized gradient
clustering [2]. Next, inspired by the K -means++ initialization [3],
we propose a novel distributed center initialization scheme, which
is shown to improve the performance of our methods, compared
to the baseline random initialization.
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initialization, K -means++
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I. INTRODUCTION

Clustering is an unsupervized learning problem, with the
goal of finding groups of similar data, without having any
knowledge of the underlying distribution, or even the true
number of groups [4], [5]. Depending on the approach, data
can be assigned to clusters in a hard or soft manner, with hard
clustering assigning data to exclusively one cluster, while soft
clustering provides the probability of a sample belonging to
each cluster. In this paper we will be studying the problem
of hard clustering. Additionally, we will focus on center-
based clustering, e.g., [6], where the goal is to find centers
which represent the clusters. Many popular algorithms fall in
this category, including the celebrated Lloyd’s method [7], its
extension to Bregman losses [8], Huber loss clustering [9], as
well as the recently proposed gradient based clustering [2].

Clustering has traditionally been studied in the centralized
regime, where the methods are run across the entire dataset.
Another learning paradigm, which has been attracting sig-
nificant interest is that of distributed learning. Distributed
learning is a popular learning paradigm, wherein many users
collaborate to train a joint model, while keeping their data
private. There are many approaches to distributed learning,
such as federated learning (FL), e.g., [10]-[13], and peer-to-
peer (P2P) distributed learning, e.g., [14]-[17]. In this paper
we are interested in the P2P setup, where users communicate
directly with one another, while no user can communicate
directly with all the others. The communication network is
modeled as a connected graph G = (V, E). Clustering in



this setup is very challenging, as the data is stored locally at
each user, with users only able (or willing) to exchange local
parameter estimates (e.g., local centers) in order to achieve the
final goal of obtaining a clustering of the entire, joint dataset.

Literature review. Distributed clustering has been con-
sidered in [18]-[24]. Work [18] proposes approximate K-
means algorithms for both P2P and FL setups, providing
theoretical guarantees only in the FL setup. Works [19], [22],
[24] study distributed soft and hard K-means clustering, with
only the method in [19] providing convergence guarantees
to a local minima of the centralized K-means problem. In
[20], the authors study K-means and K-medians problems
and rely on the idea of coresets [25], to design methods
with provable constant approximation guarantees. Work [21]
studies distributed K -means in the special case where users
have a single sample, while in [23] the authors design a para-
metric family of distributed /K-means methods, establishing
convergence of centers to local minima of the centralized K-
means problem. Finally, we propose a unified framework for
distributed clustering in [1], that considers popular clustering
methods beyond K-means, such as Huber loss clustering [9].

Contributions. In this work we study the effects of center
initialization on the performance of the distributed gradient-
based clustering (DGC-F,) method proposed in [1]. To that
end, we perform extensive numerical experiments, demon-
strating that DGC-F,, is more resilient to center initialization,
compared to the centralized gradient clustering (CGC) method
from [2]. Inspired by the celebrated K-means++ initializa-
tion, we then propose a novel distributed center initialization
scheme, dubbed Distributed K -means+Clustering (DKM+C),
which combines local K-means++ with multiple communica-
tion and local clustering rounds, to produce the initial centers.
The proposed scheme is shown to result in better performance
of the algorithm, compared to the baseline random center
initialization.

Paper organization. The rest of the paper is organized as
follows. Section II formally states the problem of distributed
center-based clustering, Section III introduces the proposed
family of methods, Section IV provides theoretical results,
Section V provides numerical results and Section VI concludes
the paper. The remainder of this section introduces notation.

Notation. The spaces of real numbers and d-dimensional
vectors are denoted by R and R?, with || - || denoting the
Euclidean norm. The set of non-negative integers is denoted
by N, with [M] ={1,..., M}, for any M € N. For a matrix
A e R4 AT and \(A) denote transposition and the largest
eigenvalue of A. Superscripts and subscripts denote iterations
and users, while brackets correspond to the particular center
or cluster, e.g., zt(k) is center k of user 4 at iteration .

II. PROBLEM FORMULATION

Consider a network of m > 1 users, communicating over a
graph G = (V, E), where V = [m] is the set of vertices (i.e.,
users), I is the set of undirected edges connecting them, such
that {i,j} € F if and only if users ¢, j communicate. Each
user contains a local dataset D; = {y;1,...,yn,} C R, for

some N; > 1. The goal is to produce a clustering of the global
data D = U;cm) D, into K > 2 disjoint clusters. Formally,
the problem can be stated as

Kd min Z Z Z f lZ ylr )
x,€R¥Y ¢, eCf P Ze[m] i€[m] ke[K] reC;(k)
subject 0 X1=...=Xyy

where x; = [z;(1)7 xi(K)T}T is the vector stacking
the K centers x;(k) € R¢ of user i, Ck,p, is the set of
all K-partitions of D;, i.e., C; € Cx p, is a K- tuple C; =
(Ci(1),...,Ci(K)), such that C; (k) C D;,' C;(k)NC;(1) = @
and Upe(x)Ci(k) = D;. Here f : R x R — [0,00) is a loss
function, e.g., f(x,y) = [l —y||? recovers the distributed K-
means problem, with many other possibilities, such as Huber,
Logistic or Fair loss, see [1]. In general, (1) is NP-hard, even
in the centralized setting, e.g., [26]-[28]. As such, the best
one can hope for is reaching stationary points, with various
schemes guaranteeing this in both centralized, e.g., [2], [7],
[8], [29], and distributed settings, e.g., [1], [19], [23].

The problem (1) ensures clustering of the joint data is
produced, by requiring centers across all users to be the same.
As (1) is a constrained problem, a relaxation is proposed in
[1], making it amenable to a distributed first-order approach.
The relaxed problem is given by

2
_min T 0)= Y0 Y [5 3 feth) - (0]
CECm. k. D i€m] ke[K] — jEN;
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+ - Z wi,rf(xi(k)a yi.,’l“):|7 (2)
p rGC,(k)

where C,, kx,p is the set of all clusterings of the entire
data, ie., for C € Cp kp, we have C = (C1,...,Cp),
with C; € Cxp,, N; = {j €V :{i,j} € E} is the set of
neighbours of user ¢ (not including ¢), while p > 1 is a tunable
parameter. The formulation (2) relaxes (1), by considering
an unconstrained problem which penalizes the difference of
centers among neighbouring users and controls the trade-off
between center estimation and proximity, via the parameter p.

III. THE DGC-F, FAMILY OF METHODS

In this section we describe the DGC-F,, family of methods
proposed in [1]. We refer to DGC-F,, as a family of methods,
as it subsumes several distributed clustering methods, such
as K-means, Huber, Logistic and Fair loss-based. In each
iteration users maintain their center and cluster estimates. To
begin, users choose initial centers x{ € R4 i € [m]. At
iteration ¢ > 0, users first form the clusters locally, by finding
a k € [K] for each data point € D;, such that the k-th center
is the closest to the point 7, i.e., such that

[EHE)

— il < |2E() — yirll, forall I £k, (3)

T a slight abuse of notation, we will also use D; to denote the set of
indices of the data, i.e., D; = [N;].



Algorithm 1 DGC-F,

Require: o > 0, p > 1, initial centers x? € RE4, i € [m)].
1: for all users ¢ in parallel, in round t = 0,1,...,T-1 do

2 Set O (k) < 0, for all k € [K];

3:  for each r € [N;] do

4 Find k so that ||z¢ (k) —y; .|| < |2t(0) —yirll, | # ks
5: Update CIH (k) «+ CIPY (k) U {r};

6:  Exchange centers with neighbours j € N;

7. Update 2t (k) by performing (4), for all k € [K];

8 Return (xI',CT), i € [m)].

and assign y; - to CI 7! (k). Next, the centers are updated via
i (k) = af(k) —a Y [eh(k) — (k)]
JEN;

> Vof (@l (k),yir), @

reCit (k)

(67

where o > 0 is a fixed step-size. The procedure is summarized
in Algorithm 1.2 Note that centers can be initialized randomly,
providing flexibility in designing initialization algorithms,
such as distributed variants of K-means++, e.g., [22], or the
method we propose in Section V ahead. The center update is
built on the consensus+innovation framework, e.g., [30], [31].

IV. CONVERGENCE GUARANTEES

We start by defining the notion of points to which DGC-F),
converges to, referred to as fixed points.

Definition 1: Let x € RE™d be cluster centers. We say that
Ux C Ci, k,p is the set of optimal clusterings with respect to
x, if condition (3) is satisfied for all clusterings C' € Ux.

Definition 2: The pair (x*, C*) € RE™dxC,, x p is a fixed
point of DGC-F,, if 1) C* € Ux+; 2) VJ,(x*,C*) = 0.

Definition 3: Ux C Cp, k,p is the set of clusterings, such
that 1) Ux C Ux; 2) VJ,(x,C) =0, for all C € Ux.

Note that Definition 2 requires (x*, C*) to be a stationary
point of J,, in the sense that clusters C* are optimal for fixed
centers x* and centers x* are optimal for fixed clusters C*.
As such, it is not possible to further improve the clusters, nor
the centers at a fixed point. By Definitions 1-3, a point x is a
fixed point if and only if U, # ). As such, we will call a point
x a fixed point if U, # (). We next state our assumptions.

Assumption 1: The full data has at least K distinct samples.

Assumption 2: The graph G = (V, E) is connected.

Assumption 3: The loss f is coercive, convex and /3-smooth
with respect to the first argument and preserves the ordering
with respect to Euclidean distance, i.e., for each z,y, z € R
D limyy oo f(7,y) = 003 2) 0 < f(z,y) — f(2,9) —
<sz(z,y),x - Z> < g”z B Z||2; 3) f(z7y) < f(Z7y) if
le—yll < ==yl and f(z,y) = F(z.) if [a—y] = | =—y].

Assumptions 1-3 are mild assumptions on the global data,
communication graph and loss function. Assumption 1 re-
quires the full data to have K distinct points, while placing

2The method in [1] is more general, in that it allows for distance metrics
beyond Euclidean and multiple center updates per iteration, see [1] for details.
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Fig. 1. Homogeneous and heterogeneous data distributions across users.

no requirements on the local datasets. Assumption 2 requires
the communication graph to be connected, which allows for
(1) to be solved in a distributed manner. Finally, Assumption
3 is a mild assumption on the behaviour of the loss, which is
an intrinsic property of the loss, independent of the data that
we wish to cluster. It is shown to be satisfied by a broad class
of popular clustering losses, including K-means (i.e., squared
Euclidean), Huber, Logsitic and Fair loss, see [1] for details.
We are now ready to state the convergence result from [1].

Theorem 1: Let Assumptions 1-3 hold. For the step-size o <
(8/p+ X(L))™L, any initialization x° € RE™ and p > 1, the
sequence of centers {x'},cn generated by DGC-F,, converges
to a fixed point x* = x*(0,p) € RE™4 such that Uy~ # 0.
Moreover, the clusters converge in finite time, i.e., there exists
a tg > 0 such that Uy C Uy+, for all t > tg.

Theorem 1 shows that the sequence of centers generated
by DGC-F, is guaranteed to converge to a fixed point, for
any center initialization. We emphasize that the fixed point
to which the sequence of centers converges, x* = x*(0, p),
depends on center initialization and penalty parameter p. In
the next section we perform extensive empirical studies of the
effect of center initialization on the performance of DGC-F,.
A detailed theoretical study on the effect of parameter p on
fixed points of DGC-F,,, as p — oo, is provided in [1].

V. NUMERICAL RESULTS

In this section we study the effect of center initialization
of the performance of DGC-F,. In particular, we test the
performance of our method using K-means loss, dubbed
DGC-KM. All experiments are performed on Iris data [32],
which consists of 150 samples, belonging to K = 3 classes
(50 samples per class), and dimension d = 4. We distribute the
samples across a ring network of m = 10 users. We consider
two types of data distributions across users: homogeneous
and heterogeneous. In the homogeneous setup, each user is
assigned samples from all three classes, in equal proportion. In
the heterogeneous setup, each user is assigned samples from
two out of three classes, with different number of samples
per class and per user. The data distributions are visualized
in Figure 1. We set p = 10 in the homogeneous setup and
p = 100 in the heterogeneous setup, due to different data
distributions across users, to enforce consensus more strongly.

To test the robustness to initialization of our method,
we apply our DGC-KM method with two different center
initializations: random and local K-means++. For random
initialization, each user selects three centers uniformly at



Algorithm 2 DKM+C

Fig. 2. Performance of methods on homogeneous and heterogeneous data.

random from their local data. For local K -means++, each user
initializes their centers using the K -means++ scheme on their
local data. To compare the sensitivity of our algorithm, we use
the CGC method from [2], also using the K-means cost. CGC
is also initialized using random and K -means++ initialization,
with the difference being that CGC chooses samples from
the entire dataset, as it is a centralized algorithm. We run
both methods for 7" = 1000 iterations, on both homogeneous
and heterogeneous data.> We measure the performance via
clustering accuracy, i.e., by comparing the true labels to the
ones produced by the clustering methods, accounting for label
permutation. We repeat the experiments across 5 runs and
present the average accuracy. For our distributed method, we
additionally average the accuracy across users. The results are
presented in Figure 2. The solid lines represent accuracy per
iteration using random initialization, while dashed lines repre-
sent the performance using K-means++. We can see that our
DGC-KM method shows less sensitivity to center initialization
compared to CGC-KM, with the gap in performance of our
method under different initialization much smaller than that
of CGC-KM. This phenomena has previously been observed
in [1], [19], where it was noted that distributed clustering
algorithms are less sensitive to initialization, compared to
their centralized counterparts, as they in essence perform
m initialization, one per each user, whereas the centralized
algorithms only perform one initialization. Combined with
the effects of consensus, these multiple initializations help
mitigate the effects of bad initialization at some users and
lead the algorithm to a solution of better quality.

Another interesting observation from Figure 2 is that the
performance of DGC-KM is improved under local K -means++
initialization, even when the data across users is heteroge-
neous. This leads to a natural question of can the bene-
fits of K-means++ initialization be further exploited in the
distributed setup, if users are allowed to collaborate during
the initialization phase? To answer this question, we design
a novel distributed center initialization algorithm, dubbed
Distributed K-Means+Clustering (DKM+C). The algorithm
runs for a user-specified number of communication rounds
L > 0, with L = 0 corresponding to each user initializing
their centers by performing K-means++ on their local data. If
L > 1, then in round I = 1,..., L, users first exchange their
centers from round [ — 1 with their neighbours. Next, in order

3Note that the distinction between homogeneous and heterogeneous data is
irrelevant for CGC, as it is a centralized algorithm with access to all data.

Require: Number of centers K and communication rounds
L>0.
1: for all users ¢ in parallel, in communication round | =
0,1,...,L do
if 1 = O then

Produce x! by performing K -means++ on local data;

Exchange centers xi_l, xt~1 with neighbours j € N;;

Produce new centers x;, by running K-means on
{7 (k) 257" (k) k€ [K], j € Ni}s

6: Initialize centers via x < xZ, for all i € [m].
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Fig. 3. Performance of methods on homogeneous and heterogeneous data.

to account for potential label mismatch among different users,
each user locally runs the K-means clustering algorithm on
their own and their neighbours centers, i.e., on the dataset
{zi7'(k), 27N (k) © k€ [K], j € Ni} C R of size
(JAV;|+1) K. The new centers x! are the centers returned by K-
means. The steps are then repeated, until all L communication
rounds are performed. The proposed initialization scheme is
summarized in Algorithm 2. The idea behind the proposed
scheme is to combine the power of K-means++ with local
communications, to produce center initializations carrying
more information than purely local initialization. Compared to
some existing distributed K-means schemes, e.g., [22], where
users are required to run the max-consensus algorithm until
convergence a total of 2k times, we provide a communication-
efficient algorithm, that only communicates for a fixed number
of rounds, while performing center inference locally, trading
communication for computation.

We test the impact of our new initialization scheme, by
running DGC-KM for 7' = 1000 iterations, using random
initialization and DKM+C with L = {0, 1,2, 3,4}, on both
homogeneous and heterogeneous data. We then report the final
accuracy of our method, averaged across 5 runs. We again use
p = 10 for homogeneous and p = 100 for heterogeneous data.
The results are presented in Figure 3. The x axis represents the
number of communication rounds, while the y-axis represents
the final accuracy obtained by DGC-KM. We can see that
increasing the number of communication rounds benefits the
initialization in both homogeneous (L = 3) and heterogeneous
(L = 1) setup. More importantly, the initialization scheme
outperforms the random initalization in both setups, showing
clear improvements.



VI. CONCLUSION

In this work we studied the effects of initialization on
the performance of distributed clustering method originally
proposed in [1]. We demonstrated through experiments on
real data that the performance of DGC-F, is more robust
to initialization compared to centralized gradient clustering
method from [2]. Next, we propose an initialization scheme,
dubbed DKM+C, inspired by K-means++, which is shown to
improve the performance of DGC-F, compared to the baseline
random initialization. Future work includes a rigorous theo-
retical analysis of the benefits of the proposed initialization
scheme, as well as studying a version of the DGC-F, method
with a time-varying penalty p;, such that p; — oo, as t — oo.
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