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Abstract—It is well-known that the performance of many
clustering algorithms is strongly affected by center initialization.
Recently, a number of papers empirically showed that distributed
clustering algorithms exhibit improved robustness to center
initialization compared to their centralized counterparts. In this
paper we provide a theoretical justification for this phenomena,
by studying the statistical guarantees of a distributed center
initialization method, inspired by the celebrated K-means++
approach. In the presence of K distinct data populations and the
client-server setup, where each user contains a chunk of the data
and communicates directly with the server, we establish mean-
squared error (MSE) guarantees of the proposed initialization
scheme, in terms of the gap from the population means. We show
under mild assumptions that the probability of a population not
being represented in the center initialization decays exponentially
in the number of users, implying that the MSE approaches
the optimal error exponentially fast as the number of users
grows. Our result provides the first theoretical explanation for
the improved robustness to center initialization exhibited by
distributed clustering algorithms in practice.

Index Terms—clustering, distributed, client-server, center ini-
tialization, K -means++, generalization, mean-squared error

I. INTRODUCTION

Clustering is a well-studied unsupervised learning problem,
where the goal is to group the data into K > 2 groups based on
some similarity criteria, without having knowledge of the true
data distributions or the number of groups present [1f], [2].
There are many approaches to clustering, including center-
based [3]], density [4] or spectral clustering [5]. In particu-
lar, the center-based clustering algorithms, which include the
celebrated K-means algorithm [6]], Bregman [7] and gradient
based clustering [8], are known to be extremely sensitive to
center initialization, with arbitrarily bad performance possible
under bad center initialization [9]]. To mitigate this issue, many
center initialization algorithms have been proposed, among
which K-means++ [10] is arguably the most renowned. The
idea of K-means++ is to choose centers that are far from
each other, thereby increasing the probability of initializing
a center from each of the underlying clusters. Formally, for
a given dataset D, K-means++ provides a set C of K initial
centers, by first selecting a center from D uniformly at random,
after which the successive centers are selected with probability
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%, for all z € D, where d(z,C) = min.ec ||z — y||
yep Y,

is the distance of the point = from the set C. The procedure
is summarized in Algorithm [I] Theoretical guarantees of K-
means++ have been studied extensively, e.g., [10], [11]], with
the expected cost of the center initialization produced by K-
means++ guaranteed to approximate the optimal clustering
cost up to an additive log(K) factor.

Distributed learning is a paradigm where multiple users
collaborate to train a shared model on the global data, with
each user holding a chunk of the data locally. Distributed learn-
ing has been widely studied in both client-server [12]-[14]]
and fully decentralized settings [15]—[17]. While the primary
advantage of distributed learning is the reduced computation
cost and enhanced privacy guarantees due to each user only
having access to a chunk of the data, it was observed recently
in the context of clustering that distributed methods show less
sensitivity to center initialization [I18]-[20]. The authors in
[20] hypothesized that the improved resilience stems from
the fact that, while centralized algorithms initialize exactly K
centers, in distributed algorithms each user initializes their own
centers, effectively initializing a total of mK centers, where
m > 2 is the number of users, decreasing the likelihood of a
cluster not being represented in the initialization. However, a
theoretical explanation for this phenomena is lacking.

Literature review. We next review the related literature on
distributed clustering and guarantees of initialization methods.

a) Distributed clustering: In the context of distributed
learning, clustering has been studied in both client-server,
e.g., [21]-[24] and decentralized settings, e.g., [18]-[20], [25].
The work [21] designs both client-server and decentralized
versions of K -means, providing theoretical guarantees in the
client-server setup, in terms of the deviation of the resulting
clustering from a clustering produced by running K -means on
the full, centralized data. The works [22], [23]] study clustering
in the presence of outliers, while [24] propose a client-
server algorithm based on the spectral K-means clustering
method [26], with provable cluster recovery guarantees. The
authors in [18]] propose decentralized versions of K -means
and Expectation Maximization algorithms in the decentralized
settings, based on the Alternating Direction Method of Multi-
pliers framework, showing that the centers provably converge
to the centers of their centralized counterparts, obtained on



the joint data. The work [20] proposes a general gradient
based framework for decentralized clustering, which subsumes
popular clustering methods such as K-means and Huber
clustering, with the centers provably converging to the set of
fixed points of the clustering cost and achieving consensus
asymptotically. This is followed up by [19], who consider
the same gradient based clustering framework and propose
a decentralized version of the K-means++ method, which is
shown to improve the performance empirically. The authors
in [25] propose decentralized versions of K-means and fuzzy
C-means methods, as well as a decentralized version of the
K -means++ initialization. The authors in [[18] first empirically
observed that distributed clustering algorithms show more
resilience to center initialization. This was further observed
in [19], [20], where the authors hypothesized that the reason
for the improved resilience stems from the fact that in the
distributed setting, each user initializes their own centers, thus
increasing the likelihood of selecting at least one representative
from all the underlying clusters.

b) Initialization guarantees: Perhaps the most widely
used algorithm for center initialization, K-means++, was
originally proposed in [10]. For a finite dataset the authors
show that the ratio of the expected cost of the produced center
initialization and the optimal clustering cost over the dataset
is of the order O(1 + log(K)). This initial work sparked
many extensions, e.g., the authors in [27] proposed a scalable
version of K-means++ which draws multiple points in a single
pass. The authors in [28|] proposed a generalized version,
where a total of SK points is sampled, for 5 > 1, with

each point x € D sampled with probability %’
for | > 1, showing that the ratio of the exp%cted cost
of the initialization with SK centers and the optimal cost
is of the order O(1 + log(K)/m). Finally, the authors in
[11] improve the guarantees from [10], [27], showing that
performing ©(log(n)) passes over the data, where n is the
size of D, while drawing ©(K) centers in each pass, results
in the ratio of the expected and optimal cost of the order O(1).

Contributions. The aim of this work is to provide a
theoretical justification of the improved robustness to center
initialization in distributed clustering. To that end, we first
propose a distributed center initialization method in the client-
server setup, wherein each user initializes K centers locally,
by running K -means++ on their dataset and sends them to the
server, which produces the final K centers by clustering the
initial centers and averaging across clusters. Next, we study
the generalization guarantees of the proposed method, in terms
of the MSE from the true population means, showing that
the resulting MSE approaches the optimal MSE exponentially
fast as the number of users increases. This is achieved by
showing that the probability of a cluster not being represented
by one of the centers decays exponential as the number of
users grows, confirming the hypothesis made in [20] on the
reasons for improved robustness to center initialization in
distributed clustering. While the idea of sampling more than
K centers was explored previously in [[I1]], [27], [28]] in the

context of improving scalability and parallelizing centralized
K-means++, our work differs in that the center sampling step
is performed independently at each user, without updating their
sampling probabilities in relation to other users. While [[11]],
[27], [28] propose to perform a clustering step to obtain the
final K centers, their analysis is focused on the guarantees
from the first, sampling part of the procedure, whereas we
show explicit conditions under which the second, clustering
step is guaranteed to perform the correct clustering.

Paper organization. The rest of the paper is organized as
follows. Section [T defines the problem considered in the paper,
Section [[II| outlines the proposed method, Section [[V| presents
the main results, while Section [V| concludes the paper. The
remainder of this section introduces some notation.

Notation. The sets of real numbers and p-dimensional
vectors are denoted by R and RP, respectively, with the
Euclidean norm denoted by || - ||. For a positive integer
m > 1, the set of positive integers up to and including m
is denoted by [m] = {1,...,m}. For a given probability
space (2, F,P) and event B € F, we use E[-|B] to denote
the expectation conditioned on the o-algebra induced by B.
Unless stated otherwise, we will use subscripts to denote
clusters and superscripts to denote users, e.g., i denotes the
center of the k-th cluster at the i-th user.

II. PROBLEM SETUP

We consider the problem of clustering data coming from
K > 2 different populations Py, each with mean u; € RP,
k € [K]. In a slight abuse of terminology, we will use the terms
population and cluster interchangeably in the reminder of the
paper. The data is split among m > 2 users, communicating
in the client-server setup, where users exchanges messages
directly with the central server. To facilitate our analysis, we
make the following assumptions on the data.

Assumption 1. Each population has almost surely bounded
radius, namely, for all k € [K] there exist constants Ry, > 0,
such that ||x — k|| < Ry, for all x ~ Py, almost surely.
Additionally, each population has bounded variance, i.e.,
Eonp, ||z — pil|? < o2, for some 0 < 0, < Ry, k € [K].

Assumption [I] requires each population to have an almost
surely bounded radius, as well as bounded variance, with the
variance much smaller than the cluster radius. This corre-
sponds to setting where most samples are concentrated around
the population mean, with some potentially large outliers.
Denote the maximum radius by R = maxpe|K] Ry.. Next, we
make the following assumption on population separation.

Assumption 2. The population means are sufficiently sepa-
rated, i.e., ming ||px — wi|| > r, for some r > R\/6.

Assumption [2] requires the population means to be at least
RV/6 apart. Using the triangle inequality, it follows that

min |z =yl >r—2R >0,
mNPk,yNPl,k;él

i.e., the populations do not overlap, almost surely. De-
note the maximum population mean distance by D =



Algorithm 1 K-means++

Algorithm 2 Distributed K-Means++ with clustering

Require: Number of centers K;
1: Choose a sample x € D uniformly at random;
. Initialize the set of centers C = {c¢; }, where ¢; = x;
: for t = 2,... K iterations do

2

) d(x.,€)*

4:  Choose sample x € D with probability W;
5

6

7

Update the set of centers C = C U {¢;}, where ¢; = x;
: end for

: return Center initialization C = {c1,...,cx};

maxy, (k] ||fix — pu || The following assumption specifies the
distribution of data across users.

Assumption 3. Each user has access to a total of n > K
independent, identically distributed (IID) samples from each
population, for a total of nK samples per user.

Assumption |3|states that the data across users is independent
and distributed in a homogeneous manner, in the sense that
each user has access to data from all of the K underlying
populations. Data independence is widely used in statistical
learning and signal processing literature, e.g., [29]-[31].

III. PROPOSED METHOD

In this section we describe the proposed initalization
method. We consider a method built on the idea of K-means++
[10], consisting of a two-step procedure. In the first step, each
user initializes K centers by running K -means++ on the local
data in isolation and sends the centers to the server. In the
second step, the sever runs a clustering algorithm = on the
mK centers received from the users, after which the final K
centers are obtained as the cluster averages and sent back to
the users. The method is summarized in Algorithm 2] We now
define the class of admissible clustering algorithms used in the
second step of Algorithm 2]

Definition 1. We say that a dataset {a;};c[,) is c-separable
with respect to a clustering { Ay }re k), if for some a > 1

(@] max

—a;ll < ] —
ieAk,k:e[K]”'uk ai| r&}g”ﬁtk pll,

where [, = ﬁ > ica, i is the mean of cluster Ay, k € [K].

Definition 2. A clustering algorithm = is c-admissible, if there
exists an o« > 1, such that for any dataset {a;};c[n) which is
o' -separable with respect to a clustering { Ay} we[k), for any
o' > «, there exist hyperparameters 1), for which Z(n) exactly
recovers the clustering { Ay }re(x)-

Definition [I] provides a separability condition with respect
to a clustering of the data, requiring the largest cluster radius
to be smaller than the smallest distance between two cluster
means, by a factor of o > 1. Definition [2] states that an
algorithm is a-admissible if, given a a-separable dataset, the
algorithm is guaranteed to recover the associated clustering.
Definitions [T) and [2] were originally introduced in [29]], where it
was shown that algorithms such as spectral K-means [26], [|32]]

Require: Number of centers K, clustering algorithm =;
1: for all users ¢ € [m] in parallel do
2: Produce initial centers C* = {c} }re(x], by running

Algorithm |1] on the local dataset Dt

3: Send the centers C* = {c] }re (k] to the server;

end for

: Server: (i) Choose hyperparameters 7 and run the clus-
tering algorithm =(7) to cluster the centers Uie[m]Ci into
K clusters {Ch e[k
(i) Produce the final centers ¢ = ﬁ Syec
k € [K] and send them to each user i € [m];

A

y, for all

and convex clustering [|33|] are a-admissible, for o sufficiently
large. From Definition [2 the parameter o can be seen as a
measure of efficiency of a clustering algorithm, with better
algorithms requiring smaller « to guarantee exact clustering.

IV. THEORETICAL ANALYSIS

In this section we analyze the performance of Algorithm [2]
We start by defining the notion of a covered cluster.

Definition 3. A cluster k € [K] is covered by center initial-
ization C, if C contains a sample belonging to population k.

Next, we provide an important intermediate lemma on the
guarantees of K-means++ initialization.

Lemma 1. Ler Assumptions [I) and [2] hold and let centers be
initialized by running Algorithm|(l|on a dataset D, containing
n IID samples from each population. Then, for any k € [K]|

r? —6R? K
)

P <([l-—m——+—
(cluster k not covered) < ( IK(D 1 2R

Proof. Let D = Uex)Dr, Where D, = {z € D

x is drawn from the k-th population}. For ease of notation,
let By, = {w : cluster k not covered}. Noting that Algorithm
draws K samples and using Bayes’ rule, it follows that

P(By) = P(Bg,1)P(Bk2|Bi,1) - - - P(Bi i |Bk,1 - - - Be,x—1),

where By = {w : cluster k not covered in ¢-th draw}, t €
[K]. From Algorithm [1} it is easy to see that P(By 1) = 1 —
# =1- % Next, let C; denote the set of centers chosen
after t iterations, for any ¢ > 2. The K-means++ weighted
selection rule then tells us that, for any ¢ > 2

d(.l?, Ct_l)Q
yED d(y,Ci—1)%

P(Blf:,t|Bk,17"'aBk,t—1): Z Z

€Dy,

where Bf ; = {w : cluster k covered in the ¢-th draw} is the
complement of By ;. Notice that, conditioned on N‘_] By, ,
the set C;_; contains no points from Dj. Denote by H(y) the
population mean corresponding to the true population of any
pointy € D, i.e., if y € Dy, then () = pg. Using the triangle



inequality and (a + b)? < 2a? + 2b°, we then have, for any
ceCi_q

1
Iz —cl* = 1 (e = o) I* = 2l = 2lI* + 2]l ey — )

—_

27( 2_6R2)>07

=~

where the last inequality follows from Assumption [2| Next,
we want to quantify d(y,C,—1), for any y € D. To that end,
consider two cases. If y belongs to one of the clusters that is
covered by C;_1, from Assumptions [I] and [2] it follows that
d(y,C¢—1) < 2R. On the other hand, if y belongs to a cluster
that is not covered by C;_;, we then have, for any ¢ € C;_1

ly —cll < lly— el + i) — ke I+ e —cll < 2R+ D.

Combining the two cases, we get d(y,C;_1)? < (D + 2R)?,
for any y € D. Therefore, we have, for any ¢ > 2

P(BE,|B Bii-1)> Y rt—GR
k, k,ly--» Dkt—1) =
k z€Dy, 4ZyED(D + 2R)2

B r?2 — 6R2
~ 4K(D +2R)?’

where the last equality follows from the fact that |Dy| = n,
for all k € [K]. Equivalently, for any ¢t > 2, we have

r2 —6R?
P(Bx¢|Br1,...,Bri-1) <1 — ——m
( k:,tl k,1, y Pkt 1) = 4K(D+2R)27
which, combined with the fact that % < 1, from

definitions of r and D, implies that

K
P(Bi) = P(Bi1) [ [ P(Bkul B - Bri-1)

t=2
<(1- r?2 — 6R2 K
= 4K (D + 2R)?

O

Lemma [1| provides an upper bound on the probability of
a cluster not being covered by Algorithm [I] in terms of
the number of clusters K, maximum cluster radius R and
minimum and maximum mean separation 7 and R. Note that
the resulting probability can be arbitrarily close to 1, as the
number of underlying clusters K increases. As we show next,
this is mitigated in the distributed setting.

Theorem 1. Let Assumptions hold and let {cy}re(K) be
the centers obtained by running Algorithm [2| using an o-

—_

admissible clustering algorithm =. If r > 2(a + 1)R, then
we have, for all k € K]

E[min |[&; — p||’] < o + 2K (R* + D?)x
JE[K]
X (1

Prior to proving Theorem [I| we provide some remarks.

2 -6R* \""
4K (D + 2R)?

Remark 1. Theorem |l| states that for each population k &
(K], Algorithm [2| will produce a center initialization which
will be at most O(o2 + [1 — ("*=6R*)/ar(D+2Rr)*| ™) apart
from the population mean g, in the MSE sense. Noting that
J,% is the optimal MSE error for any single point, it follows
that the center initialization approaches the optimal error
exponentially fast, as the number of users m — oo.

Remark 2. Note that the dependence on U,% is worst case,
in the sense that some of the clusters produced in the second
step in Algorithm [2| will contain more than a single point.
As such, a variance reduced effect can l;e achieved, as the
dependence on o} can be reduced to g’“ . However, in the
analysis used in the proof of Theorem |I| we do not know for
which k € [K] we have |Cy| > 1, therefore, we present the

worst case dependence on a,% in Theorem

Remark 3. As was discussed in Section the value of o
is an inherent property of the clustering algorithm used in
the second step in Algorithm [2| The authors in [29] show
that, if the spectral K-means method [26|] is used, then
a = O(vmK), while if the convex clustering algorithm [33]
is used, then o = ©(mK). While on first inspection this
might seem like the second term on the right-hand side in
Theorem [I] becomes vacuous, this is not the case, as D >,
by definition. If D = ©O(y/m) and the spectral K-means
algorithm is used as a sub-routine in Algorithm 2} this implies
that the second term on the right-hand side in Theorem || is

m
of the order O (m (1 — mZ—LC’2
as m — oo. As discussed, this dependence stems from the
clustering algorithm used in the second part of Algorithm

>, which still decays to zero

Proof of Theorem[I} Let C ={&,...,¢x} denote the center
initialization produced by Algorithm 2] and define B =
{w : all clusters are covered}. Noting that E[min;ecx[|¢; —

pell?] = Eld(pur, C)2], we then have

E[d(ux,C)’] = Eld(ux, C)*| B] + Eld(ur, C)°| B]
Eld(ui, C)*|B] + 2(R? + D*)B(B°),

IN

for any k € [K], where the inequality follows from Assump-
tion Nand the fact that, if cluster k& is not covered, then
d(px,C)* < 2(R?+ D?). By definition of B, to guarantee that
E[d(u,C)?|B] < o2, we need to show that the clustering step
finds the true clusters. Let C' = {¢} },e[x] denote the center
initialization of user ¢ € [m] and Ay = {c},, k € [K],i € [m] :
C}; comes from the k-th population}, b, = ﬁ ZaeAk a,
k € [K], be the desired clusters and centers, respectively.
Then, for any k # [

ok — bull > |l — gl = [lpore — brll = Nl — bu|

>r—2R > 2aR, (D

almost surely, where the last inequality follows from r >
2(ae + 1)R. Similarly, conditioned on B, for any a € Ay,

la —brll < lla — prll + [[or — prll < 2R, (2)



almost surely, since all the clusters are covered on the event
B, i.e., |A| > 1, conditioned on B. Combining (I} and (@), it
readily follows that U;c[,,,)C* is -admissible with respect to
{ Ak }re[k]. ensuring that the true clustering will be recovered
by = on B, i.e., that ¢ = by, = ﬁ ZaeAk a, which in turns

implies E[d(uy, C)2|B] < o2, for all k € [K], as desired.
Next, noting that B¢ = Uke (k] Nic[m] By, where B, = {w :
k-th cluster not covered at user 4}, it follows that

P(BY) < Y P(MicmBi) = Y P(BY™,

ke[K] ke[K]

where the last equality stems from the fact that the data
across users is IID and users run K-means++ on the local
data independent from one another. The claim now follows by
applying Lemma 1 on P(B}), for all k € [K]. O

V. CONCLUSION

In this paper we provide a theoretical explanation for
the recently observed phenomena of improved robustness to
center initialization in distributed clustering. To that end, we
proposed and analyzed the guarantees of a distributed version
of the K-means++ initialization scheme in the client-server
setup, assuming users have access to IID data drawn from K
different populations. We show under mild assumptions that
the center initialization produced by our method is guaranteed
to achieve a MSE with respect to true population means which
approaches the optimal error exponentially fast as the number
of users grows. This is achieved by showing that the proba-
bility of a population not being covered by our initialization
scheme decays exponentially as the number of users grows,
aligning well with prior hypotheses and helping to explain
why distributed clustering algorithms show less sensitivity to
center initialization than their centralized counterparts.
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